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Abstrset. It is shown that the renormalization group approach can be extended to a Bose 
system without imposing an ndhoe upper momentum cut-off. The strategy adapted is to 
eliminate momenta between m and a small but arbitrary momentum po  by performing a 
preliminary partial trace an the partition function. Recursion relations for the parameters 
of the resulting Hamiltonian are derived in a form which enables scaling functions for the 
susceptibility and the order parameter to be calculated. The functions exhibit a cros~over 
from dilute gas critical behaviour to that of a fully interacting system. The results are in 
agreement with those derived by Weichman el 01 who relied upon a mapping of the Bose 
system onto a classical, two-component spin model. It is contended that a rigorous 
justification for the mapping emerges from the approach of this paper. 

1. Iutroduction 

An essential prerequisite for the application of the renormalization group (RG) theory 
of critical phenomena [I]  to a system is that it should he characterized by an upper 
momentum cut-off p c .  For many physical systems such a cut-off exists naturally. For 
a lattice system, for instance, the dimension of the first Brillouin zone provides the 
upper limit. For a fluid system, such as an assembly of interacting bosons, on the other 
hand, no natural upper cut-off exists. In early attempts [2] to apply RG ideas to an 
assembly of bosons, a cut-off of the order of the thermal momentum A;' of the particles 
was imposed on the system in the expectation that momenta large compared to A;' 
would not be of much consequence for the critical behaviour of the system. Recently, 
experiments on the behaviour of superfluid helium in Vycor glass [3,4] have renewed 
interest in the critical behaviour of a Bose system, especially as regards the problem 
of crossover from ideal-gas critical behaviour to that of a fully interacting system. The 
earlier RG treatments have been scrutinized, and in particuiar it has been argued [ 5 ]  
that the assumption pc-A;' is inappropriate in view of the fact that an important 
scaling parameter which enters the theory is 

s =pfA\:/41r 

and this becomes independent of temperature for p c -  A;'. On the other hand, for a 
fixed p c ,  s wouid go io iniiniiy For T +  0. ii has been suggesied ihai pc  shouid be iaken 
of the order of ( l / a )  where LI is the mean distance between the particles. The above 
criticism of the magnitude of p .  does not constitute any serious deficiency of the theory 
on account of the fact that s appears as an irrelevant variable in the theory and 
consequently the original magnitude of s or p .  makes little difference to the theory. 
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Nevertheless, what is perhaps objectionable is the imposition by hand of a cut-off on 
a system which in reality has no finite upper limit to momenta. The cut-off seems to 
be an artifice designed solely for the application of the RG theory to the system. 

Is it possible to do away with the imposition of an ad hoc p.? This question is 
answered in the affirmative in this paper by integration of momenta between infinity 
and an arbitrary low value p o .  Rescaling in the sense of RG is evidently not possible 
at this stage. The resulting effective Hamiltonian, however, can be subjected to complete 
RG transformations with po  playing the role of an upper fixed momentum. The para- 
meters characterizing the effective Hamiltonian play an important role in the subsequent 
analysis because of the connections they provide to the parameters of the original 
Hamiltonian of the system. 

Following the above procedure, recursion relations appropriate to  the study of 
crossover behaviour are derived in section 3 in (4- E )  dimensions. They show that the 

tion are functions of just one combination x of the scaling fields U and f which can 
be regarded as measures, respectively, of the strength of boson-boson interaction and 
deviation from criticality. As a result, scaling functions of various physical quantities 
are also functions of x only. This is demonstrated in section 4 by calculating the 
crossover scaling functions for the susceptibility and the order parameter. 

mapping of a Bose system onto a classical two-component spin model IS]. It should, 
however, be pointed out that the mapping has not been rigorously established in [SI. 
The arguments that have been advanced pertain to the normal phase only, leaving 
open the question of mapping for the condensed phase. As discussed in section 5, the 
RG approach of the present paper provides a more convincing justification of the 
mapping. 

P Sun and K K Singh 
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n.e above resn!!s are in genera! agreement with those derived on ?he basis of a 

2. Generation of internal cut-off 

The system under consideration is an assembly of interacting bosons contained in a 
d-dimensional box of volume V = L d  and characterized by a temperature T and 
chemical potential p. The reduced Hamiltonian of the assembly in units such that 
h = l  is 

where ( m / 2 )  denotes the mass of a boson, (u,/2) the strength of boson-boson interac- 
tion, and p the inverse of the product of T and the Boltzmann constant kg.  The system 
is assumed to obey periodic boundary conditions which imply that each component 
k, of single-particle momentum k has values (2an,lL) with n, ranging over the set of 
integers. In equation (2) the usual approximation of replacing the Fourier transform 
of the two-body potential by a constant U, has been made. 

Our aim is to study the criticai behaviour of tine assembiy by rhe RG method. The 
latter, as is well known, works only if the system possesses an upper momentum cut-off. 
Since a boson assembly has no natural cut-off, an appropriate way to introduce a 
cut-off is to perform a partial trace on the density matrix of the system so as to eliminate 
momenta between m and some finite but arbitrary value p o .  Later an, it will be found 
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A;' = (m/4mp)'/'. (3) 
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convenient to choose PO small in comparison with the thermal momentum A;' given by 

The thermodynamic potential per unit volume of the assembly is given by 
1 il = -- In Z 

PV (4) 

2 =Tr exp(-H,). ( 5 )  
In order to integrate out momenta between po and m we factorize the Hilbert space 

. of the system as h@h,  where h, denotes the subspace on which operators a,, with 
IkJ >po act, and h ,  the subspace on which a ,  with Ikl < p o  act. Using the perturbation 
expansion of Z a partial trace over the subspace h, can be carried out. This procedure 
is similar to that explained in [2]. For a weak interaction it gives the result 

where Z, denotes the contribution of connected-graphs &sing from the part of the 
Hamiltonian Ho having momenta between po and m, and Z, is given by 

(6) I I - 7 7 , -  \ v , - \  
L. = L O ~ ~ , P O l ~ l ~ P O l  

Z,=Trexp[-Hl(r l ,s , ,  4 1  (7) 
( h d  

H, = H?'+ U, 

Each summation in (10) is restricted to the range 0 < I kl < po .  The parameters (s, , rI , U,) 
are given by 

In what follows it will be convenient to choose po small in comparison with A;' so as 
to ensure s1 << 1. It is evident that a suitable choice of U, allows the parameter U, of 
the effective Hamiltonian to be treated as a small parameter. 

3. Recursion relations 

On the Hamiltonian H characterized by an upper cut-off po, we perform an RG 
transformation which eliminates moments in the range pol( < IkJ <po, 5 >> 1. This is 
achieved by expanding Z, as [2] 

Z,,= Tr exp[-H',0'(p)]. 
h(p1 
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Here the subspace h, has been factorized as h ( p ) O h ( q )  where h ( p )  denotes the 
subspace on which ap with l p l > p o / 5  act and h ( q )  the subspace on which a, with 
Iq l<po/ [  act. H',O'(p) and H',O'(q) denote the two parts of Hio' which act on the 
subspaces h ( p )  and h ( q )  respectively. P denotes the time-ordering operator, U,(.)  is 
given by  

~ ~ ~ ~ ~ ~ ~ ~ P ~ ~ ~ ~ ! o ' ~ q ~ + H ' , O ' ~ ~ ~ ~ l ~ ~ ~ ~ ~ ~ ~ ' , o ' ~ ~ ~ + H I O ' ~ ~ ~ I  (17) 

and the angular bracket (.) in equation (15) denotes themodynamic average calculated 
with the Hamiltonian H',O'(p). 

The first-order term in (15) can be represented graphically as in figure 1. An external 
line represents a low momentum operator a,(.) or a:(.) while an intemal line 
represents a pairing of large momentum operators an(.) and ai(.). The contribution 
C ( a )  of graph ( a )  in figure I is a constant given by 

1 

n ' ( 0  = dq[exp[s,(q'+ d -  I]-'. (19) 

Throughout the paper dq stands for &q/ (Z r ) ' .  

a contribution r!'' which for small s,, i.e. p," A;', can be written as 
The contribution of graph ( b )  of figure 1 is similar to H',O'(q). It adds to r, in HIo' 

where 

A ,  = A,/(  d - 2 )  (21) 

A 0 -  -2-d+l r-d12/rcd,z) (22)  

E = 4 - d .  (23)  

For the perturbation analysis that follows, E has to be regarded small compared to 1. 
We note that to zeroth order in E, A, equals (1/8r2).  

The second-order term in (15) gives connected as well as disconnected graphs. The 
disconnected graphs can be shown to lead to exponentiation of the contribution of 
connected graphs [6 ] .  The connected graphs are displayed in figure 2 .  Graphs ( 2 a )  
and ( 2 6 )  add constant terms of order U: to C ( a )  given by (18). They are of no interest 
in what follows. Graphs ( 2 c )  and ( 2 d )  make contributions to the small-momentum 
vertex ( e )  of figure 1, while graphs (Ze )  and (2f) make contributions to r ,  in H',O'(q). 

( a )  ( b )  ( C )  

Flpure 1. Graphical representation of the fint-order term in equation (15). The external 
lines represent IOW momentum operaton (aq.  a i ) .  The internal liner represent pairings of 
large momentum operators (ap ,  a;). 
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( 2 d )  (Ze)  ( 2 1 )  

Figure 2. Connected graphs arising from the second-order term in equation (IS), 

The contributions of the graphs are calculated in the standard fashion [2]. Graphs 
(2c) and ( 2 4  add to U, a term d2) given by 

2exp E 1 exp(E)-1 
u ( 2 ) = - s 1 u ' ~ l ~ ~  dq[[exp(E)-1]2 +- 4E exp(E)+ l  

E =s,(q2+rl) .  ( 2 5 )  

For small sI this reduces to 

u ( 2 ) =  -'A 2 nul 2[] n S + o ( s , ) + o ( r J l .  (26) 

u ; = v , - ~ A n v , l n ~ .  2 

The effective small momentum vertex consequently acquires strength U: given by 

(27) 

The contribution of graph (2e) to r ,  in the limit of small sI is 

~ ( 2 e )  = -A,A,u:[I -5-2+"] In C+o(r,u:) (28) 

while that of graph (2f) is 

c(zf)  = -(v~/2)1(5)+o(r1u:) (29) 

(30) 

where the integration is over the domain (1q,1. \q2\ )  < 1 subject to the restriction 
that 1q,+q2! must also lie in the range (t-', 1). The latter restriction makes the 
calculation of I very difficult. As regards its dependence on 5, however, it is not difficult 
to see [7] that to zeroth order in E 

'4: I =- [ a (  1 -5') - bl-2 In 51 
8 

where a and b are pure numbers. Scaling arguments suggest [8] that b = 12. Combining 
(20), (28) and (29) and assuming uI and t to be of the same order of smallness, we 
find that the effective r, to second order is given by 
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The partition function now takes the form 
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Zl=Zloexp(-Co+H2)  

where CO is a constant and 
(33) 

To restore the range of q-momenta to (0 ,p . )  they are scaled according to 

4' = 5s. (35) 

v2 = 5 - 9  = ( L / C ) d .  (36) 

b= awl,, (37) 

The new q' are momenta of a particle in a box of volume 

Defining new boson operators 

the Hamiltonian H2 takes the same form as HI. The parameters (4, r,, U,) of H2 are 
related to (sl, U,, r , )  of H, by the relations 

s2 = 5-2s; (38) 

r2=C2ri (39) 

u2 = C'ui. (40) 

It is convenient to introduce a new variable 

and let t2 denote the same quantity after renormalization. Then (26), (32), (39) and 
(40) imply 

t2=C2f,[ l  -(u1/8v2) In 51 (42) 

In writing these relations A. has been replaced by (l/87r2). 
The recursion relations (42) and (43) have a non-trivial fixed point 

(44) 

It is also evident that the fixed point is reached only if U, = 0 and r 1  = 0 because I , ,  if 
not zero, increases continuously under RG transformations. The A line is accordingly 
f l  = 0. 

To discuss crossover behaviour, one needs recursion relations which are valid not 
only when ( t ;  U!) are in the neighbourhood of the fixed point but also when they are 
far from it. The usual linearization of recursion relations near the fixed point is obviously 
not useful here. 
We can write the recursion relations in a slightly different form by defining 

U1 = Vi/ v' i = l , 2 .  (45) 
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Equations (42) and (43) can then be written as 

U2 = ('U/( 1 + 5%) 
t,= ~ ' t / ( i + t ' ~ ) ~ / 5  

where 

U, U=- 
1 - U ,  

t = t , / ( l - u , ) 2 ' 5 .  (49) 

For small u I ,  (U, t )  are nearly the same as (q, t l ) .  Finally, choosing ('= 1tl-l we get 

t2 = + 1 /( 1 + x ) ~ / ~  

x=u/111"2. 

(50) 
( S i )  

(52) 

In (50), f denotes the sign of t .  
The recursion relations thus involve only a single combination x of the scaling 

fields U and t. As a consequence, various physical quantities will also be functions of 
x, as wi!! he shown in the ncx! sertina. 

Near the critical line f = 0, one can distinguish two limiting types of behaviour: 
the 'strong interaction' critical behaviour corresponding to ( f  +O, U # 0) and the 'ideal 
gas' behaviour corresponding to (111 > 0, U + 0). In the next section we shall calculate 
the equation of state of the system and show that it exhibits a crossover from ideal 
gas behaviour to non-classical critical behaviour. 

.. - . . I /  I I ..\ 
U2 - A, (1 T A ,  

. .  

4. Crossover functions 

In this section we shall derive the equation of state for the system and exhibit its 
scaling property. 

We start by adding an external-field term 

to the dimensionless Hamiltonian Ho of equation (2) where h denotes the field conjugate 
to the real part of the order parameter a 0 / n .  Following Bogulubov [9] we replace 
a 0 / n  everywhere in the Hamiltonian by a real c-number M. The thermodynamic 
potentiai per unit voiume is then given by 

=a'( T, p, M2) - hM (54) 

a'= --!-In TI exp[-Ho(M)] 
PV 

(55) 

H o ( M )  denoting Ho after the replacement a o f f l +  M. Note that 0' is a function of 
M' only by virtue of the invariance of Ho under the gauge transformation a, -+ at eim, 
M + -M.  On minimizing Cl with respect to M ,  we get the equation of state 
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and the condition of stability 
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(57) 

In (56) (.) denotes thermodynamic average calculated with H,,. 

results of section 2 consequently remain valid. 
The RG transformation does not involve the condensate operators (a,,, a:). The 

Equations (6), (33) and (56) imply 

where 

h2 = t d I2h  

M2 = Sdi2M 

Comparison of (58) with (56) shows that the equation of state is formally invariant 
under the RG transformation. 

The simplest way to evaluate the right-hand side of (56) is to use generalized 
Hartree-Fock factorization for the averages appearing in that expression. For small 
( h l M )  and small M, the result can be written as [lo] 

h , / 2 M ,  = r, (61) 
where 

h, =/3h(s,p,d)-li2 (62) 

M i  = s,pTd M 2  (63) 

r, = ~ u l M : + f v , 1 2  (65) 

(66) I ,  =- [A(r . )+A(r .  + 2 r , ) ]  

(67) 

(68) 

and 1,  is the scaling variable defined in (41). The results assume that both r. and 
( r ,  +2r , )  are positive quantities; otherwise the spectrum of elementary excitations loses 
meaning. Note that by virtue of (57) r. is greater than zero in the normal phase defined 
as ( h  + 0, M + 0, h /  M # 0). On performing an RG transformation, the equation of state 
stays invariant while (r", r,) scale as 12(rn ,  rs) and M :  scales as (d -2M: .  Choosing 
l2 = 1tI-l as before, the equation of state becomes 

A0 
2 E  

A0 
2 E  

I2 =- [ -A(r , )  + A (  r. + 2 r , ) ]  

A ( r )  = ( r -  r'-'I2 ) 

zl = t 2+fu2m2 [A(  z,) +3A( z 2 ) ]  (69) 10 

(70) U 2  z2= u2m2+zI+-  [ -A(z , )+A(z , ) l  5 



RG for bosons with internal cut-off 4555 

where 

z, = Itl-lr, 

z2= ltl-'(rn +2rs) 

m2= " * M ; l f l - ' + E I 2 .  

In the normal phase z2+ z, and (69) yields 

(74) 
ZI = f 2 ( X ) + T [ Z '  2u2 - 2 : - q .  

The sign of 1, must be taken to be positive to ensure a positive z,. 
Equations (71) and (74) imply that the susceptibility r;' has the form 

r ; l=l~l- lY(x)  (75) 

._. . . .  where the scaling function Y is given by 

XE 
In Y. _- Y 

1 =  
(l+X)2's 5(1+x) 

The result holds for small E, i.e. E In Ycc 1. 

implies Y = 1 and therefore 
In the limit of a weakly interacting or dilute Bose gas ( u + O ,  t Z 0 ,  x<c 1) (75) 

r;' =It l - ' .  (77) 

(78) y- X2/J+2./s 

y =  1+ €15. (79) 

In the opposite limit of a strongly interacting system (U # 0, t -f 0, x >> 1) 

implying a susceptibility exponent 

The susceptibility thus shows a crossover from dilute-gas critical behaviour to that of 
a strongly interacting system. This result as well as equation (76) for Yare in agreement 
with those obtained by Weichman et ol [SI by mapping a Bose system onto a classical 
S4 spin model. 

In the ordered phase ( h  + 0, m # 0) equations (69) and (70) give 

(80) 

(81) 

-2 - 3[m2u2-  f2(x)1 

&U2 

10 
z2 = m2u2+-z2 In z2 .  

Let Y2(x) denote the solution of these equations for m2. The definition (73) then gives 

M:u*=1111-'/2Y 2 ( x). (82) 
Y2 is thus the scaling function for the order parameter. Equations (80) and (81) are 
equivalent to the result derived in [ 5 ]  for the crossover scaling function of the order 
parameter. The comparison is made more explicit by eliminating z2 between ( 8 0 )  and 
(81) and defining 

Q1 = (m2x/2)'13. (83) 

QI = 1 +2-"2~Q;/5. (84) 

The resulting equation for Q, to first order in E is then 
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This is identical with the result derived in [SI if one writes Q- there as 

and notes that our M:v* corresponds to 2m2u* in [SI. 

the solution 
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Q-=  (1 - u/u* )Q1  ( 8 5 )  

In the limit of a strongly interacting system ( x  >> 1) equations (80) and (81) have 

(86) 
(87) 

z2 = f (  m2+ x- ' / ' )  
m2=21-3e /10  - 2 / 5 + 3 s / 2 5  

X 

The order parameter M in this case is proportional to JtJB with 

1 3 E  p =-_- 
2 20' 

In the limit of a weakly interacting system ( X N  1) we get 

z2 =f(m2x+ I )  

2 E  
m2=- - -  In 64 

x 10 

which yields 

and hence /3 =f .  Thus, like susceptibility, the order parameter also exhibits a crossover 
from dilute-gas critical behaviour to that of a strongly interacting system. 

5. Discussion 

The primary aim of this paper has been to show that the RG theory can be extended 
to a system of bosons without imposing an ad hoc upper momentum cut-off on the 
system. An appropriate mathematical procedure for this purpose is to carry out a 
partial trace which eliminates momenta between infinity and a low arbitrary momentum 
p o .  The resulting effective Hamiltonian can then be subjected to RG transformations 
in the usual manner. 

The cut-off po being simply an artifice, all physical results must be independent of 
p o .  This can be demonstrated by considering first the variable x which governs the 
crossover behaviour of various physical quantities. For small u,/u* equation (52) gives 

with u1 and f, given by equations (13) and (41). For small sI the function A(sJ 
appearing in the expression (12) for r ,  has the form 
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It is now evident that x is independent of p o .  It is not difficult to check that z, and 
m2 defined by (71) and (73) are also independent of p o .  Consequently, the equation 
of state given by (69) and (70) is independent of p o .  

The results derived in section 4 concerning crossover behaviour are in  agreement 
with those derived by Weichman er al [ 5 ]  who relied upon a mapping of the Bose 
system onto a two-component classical spin model. The alternative, fully quantum 
mechanical, analysis presented here is, however, important because the mapping 
referred to above has not been rigorously established. As a matter of fact, the 
equivalence established in [ 5 ]  on the basis of a detailed matching of the perturbation 
expansions of the two systems holds for the normal phase only, and even there, one 
is obliged to 'trade off non-zero Matsubara frequencies for a cut-off of order A;' for 
the momentum integrals. For the condensed phase of the system, no arguments in 
favour of the mapping have been adduced, presumably because perturbation 
expansions in the condensed phase of a Bose system tend to become more complex 
due to anomalous pairings. 

We believe that it is the approach of this paper with an internally generated cut-off 
which provides the necessary backing to make the proof of the mapping onto a classical 
spin system rigorous. After several RG transformations sI + 0. Consequently in the 
perturbation expansion of a Bose system, all Bose-like factors {exp[s,(Ek + r ) ]  - l}-' 
arising from summations over the Matsubara frequencies on = 27rnJp can be rigorously 
replaced by {s,(Ek+ I ) } - ' .  This means that in the limit s, +O, the quantum mechanical 
propagators corresponding to W. = 0 are the only ones that survive. These propagators, 
however, are just the propagators appearing in the perturbation expansion of the 
classical spin system (cf [ 5 ] ) .  The problem of divergent momentum integrals is no 
longer present because of the built-in cut-off po.  The numerical factors arising from 
permutation of vertices etc in a diagram of a given order also become identical with 
those for the corresponding diagram in the two-component spin system [SI. 

The above arguments carry over to the perturbation expansions in  the condensed 
phase on introducing the usual normal and anomalous self-energies XI,  and Xo2 for 
the Bose system. As pointed out in earlier works [ I l l ,  these self-energies are the 
analogues of longitudinal and transverse inverse susceptibilities in the perturbation 
expansion of the classical system. 

To summarize, it is only after a preliminary partial integration which introduces 
an unambiguous cut-off po and after a suitable number of RG transformations which 
make the parameter s, -f 0 that the perturbation expansion of a Bose system maps onto 
that of the classical two-component spin model. 

The quantum mechanical RG has sometimes been criticized [5,12] on the ground 
that the fixed point Hamiltonian H* in this approach remains ill defined because s* = 0 
and V* (for any finite starting value of the volume V) is also zero. This criticism, 
however, is only academic because as calculations in this paper and previous work 
[Z, 111 demonstrate, nothing depends on the existence or otherwise of H*. All that is 
necessary is that the parameter transformations (42) and (43) should have a well 
defined fixed point. It should be emphasized that a critical point is not a fixed point 
of the RO transformation but rather a point on the critical surface of the fixed point 
[13]. The quantum Hamiltonian is consequently well defined at the critical point. 
Non-existence of a well defined H *  may thus be considered as a characteristic feature 
of the quantum mechanical RO approach. 

We also wish to state that the results derived in this paper are valid for all non-zero 
temperatures and consequently they hold in the low temperature limit characterized 
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by holding T fixed and small, and treating p as the independent variable. For fixed 
T the A-line f, = 0 (cf equation (95 ) )  becomes p = pc where 

P Suri and K K Singh 

The crossover scaling variable x can be written as 
d 

x (") (kBT)(d-2) '2uo/ (pp  -ppc)"2 
U* 2?r (97) 

the result being true for any T large or small. Walasek [I41 has used a field theoretic 
approach to derive a T +  0 crossover scaling function for the equation of state. The 
scaling variable found in that reference is 

y U T f h a i 2  (98)  

where h is proportional to ( p  -p, )  (and not ( p - p c ) / p c  as has been pointed out in 
[SI). This result is in agreement with the general result (97). 

In recent years attempts have been made to use the Feynman path integral method 
in statistical mechanics to study the critical behaviour of a system of interacting bosons. 
The starting point is an expression for the partition function as a functional integral 
over a 4~ classical field @(r ,  T )  [U]. This offers the advantage of treating the quantum 
and the corresponding classical system within the same framework. The results obtained 
so far [I61 by this approach are equivalent to those obtained by the quantum mechanical 
RG but invoke an ad hoc upper cut-off momentum. The problem of crossover behaviour 
does not appear to have been attempted by the path integral approach. 
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